
www.bsc.es

Barcelona, 11th May 2018

Francesc Martínez

RoMoL at BSC-CNS

MUSA Tutorial

Session 2: Completing a real

simulation

2

Outline

Generating the memory mode trace

Executing the memory mode simulation

Integrating the memory mode simulation

Result analysis

3

Step 1: Generating the memory mode trace

To modify the configuration:

$> vim job_tracer_memory.bash

We can modify:

– TSMPI_RANK_INIT First MPI Rank to be traced

– TSMPI_RANK_NUM Number of MPI Ranks tot be traced

– TSMPI_MEM_PHASES_INIT First computation phase to be traced

– TSMPI_MEM_PHASES_NUM Number of computation phases to be

traced

4

Step 1: Generating the Memory mode trace

$> cd TRACE_sp-mz.B.4_000004_BRST/ TRACE/trace_prv

$> module load paraver

$> wxparaver trace_sp-mz.B.4.prv

Ranks

1

2

3

4

Computation phases: 1 2 3 4

5

Step 1: Generating the Memory mode trace

– TSMPI_RANK_INIT = 1

– TSMPI_RANK_NUM = 1

– TSMPI_MEM_PHASES_INIT = 4

– TSMPI_MEM_PHASES_NUM = 4

6

Step 1: Generating the Memory mode trace

To generate the Memory mode trace:

$> sbatch job_tracer_memory.bash

MUSA Trace

7

Step 1: Generating the Memory mode trace

Both binaries are used!

Sp-mz.B.4 Sp-mz.B.4_instr

Extrae

Paraver Trace

TaskSim trace

Nanos++/TasklSim

plugin

Dimemas Trace

Merge

DynamoRIO

Tool

NEW

8

Step 1: Generating the Memory mode trace

A Memory mode trace contains:

– MPI Events and durations

• MPI_WaitAll, MPI_Send/Recv, MPI_Barrier, …

– OpenMP/OmpSs Events and durations

• Task Creation, Dependencies, TaskWaits, …

– For every OpenMP/OmpSs task (NEW):

• List of executed instructions

• List of accessed memory addresses

9

Step 1: Generating the Memory mode trace

What the script has generated:

– logs_musa_generation-${jobid}.[out|err]

– TRACE_sp-mz.B.4_000004_MEMO/

• LOGS/

• TRACE/

– trace_prv/

– trace_ts/

• SIMULATION/

– A1_PRESIM/

– A2_INTEGRATION_PRESIM/

10

Step 1: Generating the Memory mode trace

TaskSim trace:

– One per rank:

– .mem contains the list of addresses

– .bbl contains the list of basic blocs executed

11

Step 2: Executing a Memory mode simulation

Go to the simulation folder:

$> cd TRACE_sp-mz.B.4_000004_MEMO/SIMULATION/A1_PRESIM

Generate the greasy command files:

$> ./generate_musa_presim.bash

When finished submit all Burst mode simulations:

$> sbatch launch_all_musa_presims.bash

If something fails:

$> ./cleanup.bash

12

Step 2: Executing a Memory mode simulation

What is actually happening:

– We run detailed simulations for the phases between mpi events for

which we have detailed information.

– For all the phases, TaskSim runs on Burst mode

– In parallel

13

Step 2: Executing a Memory mode simulation

Pre-simulation results:

– musa_out_sp-mz.B.4_000001/

mn4_musa_000001_BRST/mn4_musa_000001_BRST.dat

mn4_musa_000001_MEMO/mn4_musa_000001_MEMO.dat

– RANK:PHASE_ID:777:0:MEMORY_MODE:DURATION

14

Step 3: Integrating the memory mode simulation

We use two correction factors:

– Memory/Burst bias ratio (extracted with 1 thread).

– Memory contention ratio (each simulation its own).

To execute the correction:

$> ./extrapolate_burst_duration_mn4_musa.bash

This will generate a set of TOTAL files with the

Memory durations and the corrected burst durations

15

Step 3: Integrating the memory mode simulation

1 2 4 8 16 32

P
h

a
s
e
 d

u
ra

ti
o

n

Phase Duration over number of threads

Burst

Memory

Burst+Correction

Correction factor

Contention factors

16

Step 3: Integrating the memory mode simulation

Integrating the results with Dimemas

$> cd TRACE_sp-mz.B.4_000004_MEMO/SIMULATION/

A2_INTEGRATION_PRESIM

$> ./integrate_dimemas_simulations.bash

This will:

– Run Dimemas with the original extrae trace

– Replace original phase duration with TaskSim Memory+Burst results.

– Generate Paraver traces for each configuration

17

Step 4: Result analysis

Open the Paraver trace:

$> module load paraver

$> cd TRACE_sp-mz.B.4_000004_MEMO/SIMULATION/

A2_INTEGRATION_PRESIM/trace_SIMULATED

$> wxparaver MUSA_sp-mz.B.4_000008cores_presim.prv

18

Step 4: Result analysis

Open the Paraver trace:

$> module load paraver

$> cd TRACE_sp-mz.B.4_000004_MEMO/SIMULATION/

A2_INTEGRATION_PRESIM/trace_SIMULATED

$> wxparaver MUSA_sp-mz.B.4_000008cores_mn4_musa_presim.prv

19

Step 4: Result analysis

Generate the speedup graph:

$> ./generate_speedup_graph.bash

20

Step 4: Result analysis

Conclusions

– We can simulate theoretical architectures very fast

– We can tune the degree of accuracy

– But remember, this is only a FIRST APROACH

– Every phase is simulated independently: cold caches

– We know and correct certain errors:

• Correction factors are applied to all phases (there are non-parallel

phases!!!)

• Rank-Phase simulation must be studied in detail

• In some situations we are optimistic (vectorization, runtime phase duration)

21

Questions?

