www.bsc.es

Barcelona Supercomputing Center Centro Nacional de Supercomputación

MUSA Tutorial Session 2: Completing a real simulation

Francesc Martínez RoMoL at BSC-CNS

Barcelona, 11th May 2018

- (Generating the memory mode trace
- (Executing the memory mode simulation
- (Integrating the memory mode simulation
- (Result analysis

((To modify the configuration:

\$> vim job_tracer_memory.bash

(We can modify:

- TSMPI_RANK_INIT
- TSMPI_RANK_NUM
- TSMPI_MEM_PHASES_INIT
- TSMPI_MEM_PHASES_NUM

First MPI Rank to be traced Number of MPI Ranks tot be traced First computation phase to be traced Number of computation phases to be traced

- \$> cd TRACE_sp-mz.B.4_000004_BRST/ TRACE/trace_prv
- \$> module load paraver
- \$> wxparaver trace_sp-mz.B.4.prv

- TSMPI_RANK_INIT = 1
- TSMPI_RANK_NUM = 1
- TSMPI_MEM_PHASES_INIT = 4
- TSMPI_MEM_PHASES_NUM = 4

(To generate the Memory mode trace:

\$> sbatch job_tracer_memory.bash

(Both binaries are used!

- (A Memory mode trace contains:
 - MPI Events and durations
 - MPI_WaitAll, MPI_Send/Recv, MPI_Barrier, ...
 - OpenMP/OmpSs Events and durations
 - Task Creation, Dependencies, TaskWaits, ...
 - For every OpenMP/OmpSs task (NEW):
 - List of executed instructions
 - List of accessed memory addresses

(What the script has generated:

- logs_musa_generation-\${jobid}.[out|err]
- TRACE_sp-mz.B.4_000004_MEMO/
 - LOGS/
 - TRACE/
 - trace_prv/
 - trace_ts/
 - SIMULATION/
 - A1_PRESIM/
 - A2_INTEGRATION_PRESIM/

(TaskSim trace:

- One per rank:
- .mem contains the list of addresses
- .bbl contains the list of basic blocs executed

bsc18292@login3:/gpfs/scratch/bsc18/bsc18292/romol/fix_musa_test/TRACE_sp-mz.B.4_000004_MEM0/TRACE/trace_ts> 1
total 118272

drwxr-sr-x	2	bsc18292	bsc18	4096	Apr	26	13:19	./
drwxr-sr-x	4	bsc18292	bsc18	4096	Apr	26	13:08	/
-rw-rr	1	bsc18292	bsc18	587574	Apr	26	13:19	<pre>sp-mz.B.4_proc_000001.ts.bbl.trace</pre>
-rw-rr	1	bsc18292	bsc18	2643453	Apr	26	13:19	<pre>sp-mz.B.4_proc_000001.ts.default.trace</pre>
-rw-rr	1	bsc18292	bsc18	2530662	Apr	26	13:19	sp-mz.B.4_proc_000001.ts.dict.trace
-rw-rr	1	bsc18292	bsc18	11538475	Apr	26	13:19	<pre>sp-mz.B.4_proc_000001.ts.mem.trace</pre>
-rw-rr	1	bsc18292	bsc18	73987	Apr	26	13:09	<pre>sp-mz.B.4_proc_000001.ts.mpiphases</pre>
-rw-rr	1	bsc18292	bsc18	78345	Apr	26	13:19	<pre>sp-mz.B.4_proc_000001.ts.phase_data.trace</pre>
-rw-rr	1	bsc18292	bsc18	330241	Apr	26	13:19	<pre>sp-mz.B.4_proc_000001.ts.phases.trace</pre>
-rw-rr	1	bsc18292	bsc18	5214740	Apr	26	13:19	sp-mz.B.4_proc_000001.ts.streaminfo
-rw-rr	1	bsc18292	bsc18	442942	Apr	26	13:19	sp-mz.B.4_proc_000002.ts.bbl.trace
-rw-rr	1	bsc18292	bsc18	2639347	Apr	26	13:19	<pre>sp-mz.B.4_proc_000002.ts.default.trace</pre>
-rw-rr	1	bsc18292	bsc18	2401653	Apr	26	13:19	sp-mz.B.4_proc_000002.ts.dict.trace
-rw-rr	1	bsc18292	bsc18	351062	Apr	26	13:19	<pre>sp-mz.B.4_proc_000002.ts.mem.trace</pre>
-rw-rr	1	bsc18292	bsc18	73987	Apr	26	13:09	<pre>sp-mz.B.4_proc_000002.ts.mpiphases</pre>
-rw-rr	1	bsc18292	bsc18	77897	Apr	26	13:19	<pre>sp-mz.B.4_proc_000002.ts.phase_data.trace</pre>
-rw-rr	1	bsc18292	bsc18	330239	Apr	26	13:19	<pre>sp-mz.B.4_proc_000002.ts.phases.trace</pre>
-rw-rr	1	bsc18292	bsc18	5214740	Apr	26	13:19	<pre>sp-mz.B.4_proc_000002.ts.streaminfo</pre>
- rw- r r	1	hsc18292	hsc18	442942	Anr	26	13.10	sn-mz R 4 proc 000003 ts bbl trace

Barcelona

(Go to the simulation folder:

- \$> cd TRACE_sp-mz.B.4_000004_MEMO/SIMULATION/A1_PRESIM
- (Generate the greasy command files:
 - \$> ./generate_musa_presim.bash
- (When finished submit all Burst mode simulations:
 - \$> sbatch launch_all_musa_presims.bash
- (If something fails:
 - \$> ./cleanup.bash

Step 2: Executing a Memory mode simulation

(What is actually happening:

- We run detailed simulations for the phases between mpi events for which we have detailed information.
- For all the phases, TaskSim runs on Burst mode
- In parallel

(Pre-simulation results:

- musa_out_sp-mz.B.4_000001/

mn4_musa_000001_BRST/mn4_musa_000001_BRST.dat mn4_musa_000001_MEMO/mn4_musa_000001_MEMO.dat

– RANK:PHASE_ID:777:0:MEMORY_MODE:DURATION

Step 3: Integrating the memory mode simulation

(We use two correction factors:

- Memory/Burst bias ratio (extracted with 1 thread).
- Memory contention ratio (each simulation its own).

(To execute the correction:

\$> ./extrapolate_burst_duration_mn4_musa.bash

(This will generate a set of TOTAL files with the Memory durations and the corrected burst durations

Step 3: Integrating the memory mode simulation

Phase Duration over number of threads

Step 3: Integrating the memory mode simulation

(Integrating the results with Dimemas

- \$> cd TRACE_sp-mz.B.4_000004_MEMO/SIMULATION/
 A2 INTEGRATION PRESIM
- \$> ./integrate_dimemas_simulations.bash

((This will:

- Run Dimemas with the original extrae trace
- Replace original phase duration with TaskSim Memory+Burst results.
- Generate Paraver traces for each configuration

(Open the Paraver trace:

- \$> module load paraver
- \$> cd TRACE_sp-mz.B.4_000004_MEMO/SIMULATION/

A2_INTEGRATION_PRESIM/trace_SIMULATED

\$> wxparaver MUSA_sp-mz.B.4_000008cores_presim.prv

17

(Open the Paraver trace:

- \$> module load paraver
- \$> cd TRACE_sp-mz.B.4_000004_MEMO/SIMULATION/

A2_INTEGRATION_PRESIM/trace_SIMULATED

\$> wxparaver MUSA_sp-mz.B.4_000008cores_mn4_musa_presim.prv

(Generate the speedup graph:

\$> ./generate_speedup_graph.bash

sp-mz.B.4 scalability results

Centro Nacional de Supercomputación

Barcelona Supercomputing

Center

cpus

(Conclusions

- We can simulate theoretical architectures very fast
- We can tune the degree of accuracy
- But remember, this is only a FIRST APROACH
- Every phase is simulated independently: cold caches
- We know and correct certain errors:
 - Correction factors are applied to all phases (there are non-parallel phases!!!)
 - Rank-Phase simulation must be studied in detail
 - In some situations we are optimistic (vectorization, runtime phase duration)

Questions?

